Cargando…

Prior Processes and Their Applications Nonparametric Bayesian Estimation /

This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the curr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Phadia, Eswar G. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:2nd ed. 2016.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-32789-1
003 DE-He213
005 20220120010659.0
007 cr nn 008mamaa
008 160727s2016 sz | s |||| 0|eng d
020 |a 9783319327891  |9 978-3-319-32789-1 
024 7 |a 10.1007/978-3-319-32789-1  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Phadia, Eswar G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Prior Processes and Their Applications  |h [electronic resource] :  |b Nonparametric Bayesian Estimation /  |c by Eswar G. Phadia. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVII, 327 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Prior Processes -- Inference Based on Complete Data -- Inference Based on Incomplete Data. . 
520 |a This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and Polya tree and their extensions form a separate chapter, while the last two chapters present the Bayesian solutions to certain estimation problems pertaining to the distribution function and its functional based on complete data as well as right censored data. Because of the conjugacy property of some of these processes, most solutions are presented in closed form. However, the current interest in modeling and treating large-scale and complex data also poses a problem - the posterior distribution, which is essential to Bayesian analysis, is invariably not in a closed form, making it necessary to resort to simulation. Accordingly, the book also introduces several computational procedures, such as the Gibbs sampler, Blocked Gibbs sampler and slice sampling, highlighting essential steps of algorithms while discussing specific models. In addition, it features crucial steps of proofs and derivations, explains the relationships between different processes and provides further clarifications to promote a deeper understanding. Lastly, it includes a comprehensive list of references, equipping readers to explore further on their own. . 
650 0 |a Statistics . 
650 0 |a Biometry. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Biostatistics. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319327884 
776 0 8 |i Printed edition:  |z 9783319327907 
776 0 8 |i Printed edition:  |z 9783319813707 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-32789-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)