Cargando…

Estimation and Testing Under Sparsity École d'Été de Probabilités de Saint-Flour XLV - 2015 /

Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be v...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: van de Geer, Sara (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:École d'Été de Probabilités de Saint-Flour ; 2159
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
Descripción Física:XIII, 274 p. online resource.
ISBN:9783319327747