Cargando…

From Curve Fitting to Machine Learning An Illustrative Guide to Scientific Data Analysis and Computational Intelligence /

This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algori...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zielesny, Achim (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:2nd ed. 2016.
Colección:Intelligent Systems Reference Library, 109
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-32545-3
003 DE-He213
005 20220115201616.0
007 cr nn 008mamaa
008 160413s2016 sz | s |||| 0|eng d
020 |a 9783319325453  |9 978-3-319-32545-3 
024 7 |a 10.1007/978-3-319-32545-3  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Zielesny, Achim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a From Curve Fitting to Machine Learning  |h [electronic resource] :  |b An Illustrative Guide to Scientific Data Analysis and Computational Intelligence /  |c by Achim Zielesny. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 498 p. 343 illus., 200 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 109 
505 0 |a Introduction -- Curve Fitting -- Clustering -- Machine Learning -- Discussion -- CIP -Computational Intelligence Packages. 
520 |a This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics. The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence. All topics are completely demonstrated with the computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with Mathematica's programming language on top of Mathematica's algorithms. CIP is open-source and the detailed code used throughout the book is freely accessible. The target readerships are students of (computer) science and engineering as well as scientific practitioners in industry and academia who deserve an illustrative introduction. Readers with programming skills may easily port or customize the provided code. "'From curve fitting to machine learning' is ... a useful book. ... It contains the basic formulas of curve fitting and related subjects and throws in, what is missing in so many books, the code to reproduce the results. All in all this is an interesting and useful book both for novice as well as expert readers. For the novice it is a good introductory book and the expert will appreciate the many examples and working code." Leslie A. Piegl (Review of the first edition, 2012). 
650 0 |a Artificial intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Data mining. 
650 0 |a Quantitative research. 
650 0 |a Mathematical optimization. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Analysis and Big Data. 
650 2 4 |a Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319325446 
776 0 8 |i Printed edition:  |z 9783319325460 
776 0 8 |i Printed edition:  |z 9783319813134 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 109 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-32545-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)