Cargando…

Hyperbolicity of Projective Hypersurfaces

This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Diverio, Simone (Autor), Rousseau, Erwan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:IMPA Monographs ; 5
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-32315-2
003 DE-He213
005 20220120152916.0
007 cr nn 008mamaa
008 160712s2016 sz | s |||| 0|eng d
020 |a 9783319323152  |9 978-3-319-32315-2 
024 7 |a 10.1007/978-3-319-32315-2  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Diverio, Simone.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hyperbolicity of Projective Hypersurfaces  |h [electronic resource] /  |c by Simone Diverio, Erwan Rousseau. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 89 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a IMPA Monographs ;  |v 5 
505 0 |a - Introduction -- Kobayashi hyperbolicity: basic theory -- Algebraic hyperbolicity -- Jets spaces -- Hyperbolicity and negativity of the curvature -- Hyperbolicity of generic surfaces in projective 3-space -- Algebraic degeneracy for projective hypersurfaces. 
520 |a This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta, among others, resulted in precise conjectures regarding the interplay of these research fields (e.g. existence of Zariski dense entire curves should correspond to the (potential) density of rational points). Perhaps one of the conjectures which generated most activity in Kobayashi hyperbolicity theory is the one formed by Kobayashi himself in 1970 which predicts that a very general projective hypersurface of degree large enough does not contain any (non-constant) entire curves. Since the seminal work of Green and Griffiths in 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, it became clear that a possible general strategy to attack this problem was to look at particular algebraic differential equations (jet differentials) that every entire curve must satisfy. This has led to some several spectacular results. Describing the state of the art around this conjecture is the main goal of this work. 
650 0 |a Geometry, Differential. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
700 1 |a Rousseau, Erwan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319323145 
776 0 8 |i Printed edition:  |z 9783319323169 
776 0 8 |i Printed edition:  |z 9783319812533 
830 0 |a IMPA Monographs ;  |v 5 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-32315-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)