Cargando…

Computational Modeling of Neural Activities for Statistical Inference

This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over obse...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kolossa, Antonio (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-32285-8
003 DE-He213
005 20220115192218.0
007 cr nn 008mamaa
008 160512s2016 sz | s |||| 0|eng d
020 |a 9783319322858  |9 978-3-319-32285-8 
024 7 |a 10.1007/978-3-319-32285-8  |2 doi 
050 4 |a QA76.87 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Kolossa, Antonio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computational Modeling of Neural Activities for Statistical Inference   |h [electronic resource] /  |c by Antonio Kolossa. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXIV, 127 p. 42 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Basic Principles of ERP Research, Surprise, and Probability Estimation -- Introduction to Model Estimation and Selection Methods -- A New Theory of Trial-by-Trial P300 Amplitude Fluctuations -- Bayesian Inference and the Urn-Ball Task -- Summary and Outlook. 
520 |a This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. . 
650 0 |a Neural networks (Computer science) . 
650 0 |a Biomedical engineering. 
650 0 |a Neurosciences. 
650 0 |a Biomathematics. 
650 0 |a Computer simulation. 
650 1 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
650 2 4 |a Biomedical Engineering and Bioengineering. 
650 2 4 |a Neuroscience. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Computer Modelling. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319322841 
776 0 8 |i Printed edition:  |z 9783319322865 
776 0 8 |i Printed edition:  |z 9783319812434 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-32285-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)