Cargando…

Principles of Noology Toward a Theory and Science of Intelligence /

The idea of this book is to establish a new scientific discipline, "noology," under which a set of fundamental principles are proposed for the characterization of both naturally occurring and artificial intelligent systems. The methodology adopted in Principles of Noology for the character...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ho, Seng-Beng (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Socio-Affective Computing, 3
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-32113-4
003 DE-He213
005 20220114135539.0
007 cr nn 008mamaa
008 160628s2016 sz | s |||| 0|eng d
020 |a 9783319321134  |9 978-3-319-32113-4 
024 7 |a 10.1007/978-3-319-32113-4  |2 doi 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
072 7 |a PSAN  |2 thema 
082 0 4 |a 612.8  |2 23 
100 1 |a Ho, Seng-Beng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Principles of Noology  |h [electronic resource] :  |b Toward a Theory and Science of Intelligence /  |c by Seng-Beng Ho. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIX, 431 p. 241 illus., 220 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Socio-Affective Computing,  |x 2509-5714 ;  |v 3 
505 0 |a Preface -- Acknowledgement -- Introduction -- Rapid Unsupervised Effective Causal Learning -- A General Noological Framework -- Conceptual Grounding and Operational Representation -- Causal Rules, Problem Solving, and Operational Representation -- The Causal Role of Sensory Information -- Application to the StarCraft Game Environment -- A Grand Challenge for Noology and Computational Intelligence -- Affect Driven Noological Processes -- Summary and Beyond -- Appendix A: Causal vs Reinforcement Learning -- Appendix B: Rapid Effective Causal Learning Algorithm -- Index. . 
520 |a The idea of this book is to establish a new scientific discipline, "noology," under which a set of fundamental principles are proposed for the characterization of both naturally occurring and artificial intelligent systems. The methodology adopted in Principles of Noology for the characterization of intelligent systems, or "noological systems," is a computational one, much like that of AI. Many AI devices such as predicate logic representations, search mechanisms, heuristics, and computational learning mechanisms are employed but they are recast in a totally new framework for the characterization of noological systems. The computational approach in this book provides a quantitative and high resolution understanding of noological processes, and at the same time the principles and methodologies formulated are directly implementable in AI systems. In contrast to traditional AI that ignores motivational and affective processes, under the paradigm of noology, motivational and affective processes are central to the functioning of noological systems and their roles in noological processes are elucidated in detailed computational terms. In addition, a number of novel representational and learning mechanisms are proposed, and ample examples and computer simulations are provided to show their applications. These include rapid effective causal learning (a novel learning mechanism that allows an AI/noological system to learn causality with a small number of training instances), learning of scripts that enables knowledge chunking and rapid problem solving, and learning of heuristics that further accelerates problem solving. Semantic grounding allows an AI/noological system to "truly understand" the meaning of the knowledge it encodes. This issue is extensively explored. This is a highly informative book providing novel and deep insights into intelligent systems which is particularly relevant to both researchers and students of AI and the cognitive sciences. 
650 0 |a Neurosciences. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Social sciences. 
650 0 |a Humanities. 
650 1 4 |a Neuroscience. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Humanities and Social Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319321110 
776 0 8 |i Printed edition:  |z 9783319321127 
776 0 8 |i Printed edition:  |z 9783319812007 
830 0 |a Socio-Affective Computing,  |x 2509-5714 ;  |v 3 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-32113-4  |z Texto Completo 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)