Cargando…

Stability and Boundary Stabilization of 1-D Hyperbolic Systems

This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bastin, Georges (Autor), Coron, Jean-Michel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edición:1st ed. 2016.
Colección:PNLDE Subseries in Control, 88
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-32062-5
003 DE-He213
005 20220315150536.0
007 cr nn 008mamaa
008 160726s2016 sz | s |||| 0|eng d
020 |a 9783319320625  |9 978-3-319-32062-5 
024 7 |a 10.1007/978-3-319-32062-5  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Bastin, Georges.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stability and Boundary Stabilization of 1-D Hyperbolic Systems  |h [electronic resource] /  |c by Georges Bastin, Jean-Michel Coron. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XIV, 307 p. 61 illus., 31 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a PNLDE Subseries in Control,  |x 2731-7374 ;  |v 88 
505 0 |a Hyperbolic Systems of Balance Laws -- Systems of Two Linear Conservation Laws -- Systems of Linear Conservation Laws -- Systems of Nonlinear Conservation Laws -- Systems of Linear Balance Laws -- Quasi-Linear Hyperbolic Systems -- Backstepping Control -- Case Study: Control of Navigable Rivers -- Appendices -- References -- Index. 
520 |a This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a "backstepping" method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in practical applications of boundary feedback control. Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible. 
650 0 |a Differential equations. 
650 0 |a Dynamical systems. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Mathematical physics. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Differential Equations. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
700 1 |a Coron, Jean-Michel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319320601 
776 0 8 |i Printed edition:  |z 9783319320618 
776 0 8 |i Printed edition:  |z 9783319811857 
830 0 |a PNLDE Subseries in Control,  |x 2731-7374 ;  |v 88 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-32062-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)