Cargando…

Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation

This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies.  Several real-world ca...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bee Dagum, Estela (Autor), Bianconcini, Silvia (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Statistics for Social and Behavioral Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-31822-6
003 DE-He213
005 20220115201245.0
007 cr nn 008mamaa
008 160620s2016 sz | s |||| 0|eng d
020 |a 9783319318226  |9 978-3-319-31822-6 
024 7 |a 10.1007/978-3-319-31822-6  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a K  |2 thema 
082 0 4 |a 300.727  |2 23 
100 1 |a Bee Dagum, Estela.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation  |h [electronic resource] /  |c by Estela Bee Dagum, Silvia Bianconcini. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 283 p. 52 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Social and Behavioral Sciences,  |x 2199-7365 
505 0 |a Introduction -- Time Series Components -- Part I: Seasonal Adjustment Methods -- Seasonal Adjustment: Meaning, Purpose and Methods -- Linear Filters Seasonal Adjustment Methods: Census Method II and its Variants -- Seasonal Adjustment Based on ARIMA Decomposition: TRAMO-SEATS.- Seasonal Adjustment Based on Structural Time Series Models -- Part II: Trend-Cycle Estimation.- Trend-Cycle Estimation.- Further Developments on the Henderson Trend-Cycle Filter.- A Unified View of Trend-Cycle Predictors in Reproducing Kernel Hilbert Spaces (RKHS).- Real Time Trend-Cycle Prediction.- The Effect of Seasonal Adjustment on Real-Time Trend-Cycle Prediction -- Glossary. 
520 |a This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies.  Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportation, and consumers in general to decide on appropriate action. This book appeals to practitioners in government institutions, finance and business, macroeconomists, and other professionals who use economic data as well as academic researchers in time series analysis, seasonal adjustment methods, filtering and signal extraction. It is also useful for graduate and final-year undergraduate courses in econometrics and time series with a good understanding of linear regression and matrix algebra, as well as ARIMA modelling. 
650 0 |a Statistics . 
650 0 |a Social sciences-Statistical methods. 
650 0 |a Macroeconomics. 
650 0 |a Probabilities. 
650 0 |a Econometrics. 
650 1 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
650 2 4 |a Macroeconomics and Monetary Economics. 
650 2 4 |a Probability Theory. 
650 2 4 |a Econometrics. 
700 1 |a Bianconcini, Silvia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319318202 
776 0 8 |i Printed edition:  |z 9783319318219 
776 0 8 |i Printed edition:  |z 9783319811277 
830 0 |a Statistics for Social and Behavioral Sciences,  |x 2199-7365 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-31822-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)