Cargando…

Brownian Motion, Martingales, and Stochastic Calculus

This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô's formula, the optional stopping theorem and Girsanov's theorem, a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Le Gall, Jean-François (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Graduate Texts in Mathematics, 274
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-31089-3
003 DE-He213
005 20230810185430.0
007 cr nn 008mamaa
008 160428s2016 sz | s |||| 0|eng d
020 |a 9783319310893  |9 978-3-319-31089-3 
024 7 |a 10.1007/978-3-319-31089-3  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Le Gall, Jean-François.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Brownian Motion, Martingales, and Stochastic Calculus  |h [electronic resource] /  |c by Jean-François Le Gall. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 273 p. 5 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 274 
505 0 |a Gaussian variables and Gaussian processes -- Brownian motion -- Filtrations and martingales -- Continuous semimartingales -- Stochastic integration -- General theory of Markov processes -- Brownian motion and partial differential equations -- Stochastic differential equations -- Local times -- The monotone class lemma -- Discrete martingales -- References. 
520 |a This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô's formula, the optional stopping theorem and Girsanov's theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus. 
650 0 |a Probabilities. 
650 0 |a Social sciences  |x Mathematics. 
650 0 |a Measure theory. 
650 0 |a Mathematical models. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Systems Theory, Control . 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319310886 
776 0 8 |i Printed edition:  |z 9783319310909 
776 0 8 |i Printed edition:  |z 9783319809618 
830 0 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 274 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-31089-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)