Cargando…

Rigid Cohomology over Laurent Series Fields

In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lazda, Christopher (Autor), Pál, Ambrus (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Algebra and Applications, 21
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30951-4
003 DE-He213
005 20220118133639.0
007 cr nn 008mamaa
008 160427s2016 sz | s |||| 0|eng d
020 |a 9783319309514  |9 978-3-319-30951-4 
024 7 |a 10.1007/978-3-319-30951-4  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Lazda, Christopher.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Rigid Cohomology over Laurent Series Fields  |h [electronic resource] /  |c by Christopher Lazda, Ambrus Pál. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 267 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 2192-2950 ;  |v 21 
505 0 |a Introduction -- First definitions and basic properties -- Finiteness with coefficients via a local monodromy theorem -- The overconvergent site, descent, and cohomology with compact support -- Absolute coefficients and arithmetic applications -- Rigid cohomology -- Adic spaces and rigid spaces -- Cohomological descent -- Index. 
520 |a In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Pál, Ambrus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319309507 
776 0 8 |i Printed edition:  |z 9783319309521 
776 0 8 |i Printed edition:  |z 9783319809267 
830 0 |a Algebra and Applications,  |x 2192-2950 ;  |v 21 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30951-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)