Cargando…

Hybrid Metaheuristics Powerful Tools for Optimization /

This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Blum, Christian (Autor), Raidl, Günther R. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Artificial Intelligence: Foundations, Theory, and Algorithms,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30883-8
003 DE-He213
005 20220116162238.0
007 cr nn 008mamaa
008 160523s2016 sz | s |||| 0|eng d
020 |a 9783319308838  |9 978-3-319-30883-8 
024 7 |a 10.1007/978-3-319-30883-8  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Blum, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hybrid Metaheuristics  |h [electronic resource] :  |b Powerful Tools for Optimization /  |c by Christian Blum, Günther R. Raidl. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 157 p. 20 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Artificial Intelligence: Foundations, Theory, and Algorithms,  |x 2365-306X 
505 0 |a Introduction -- Incomplete Solution Representations and Decoders -- Hybridization Based on Problem Instance Reduction -- Hybridization Based on Large Neighborhood Search -- Making Use of a Parallel, Non-independent, Construction of Solutions Within Metaheuristics -- Hybridization Based on Complete Solution Archives -- Further Hybrids and Conclusions. . 
520 |a This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linear programming, and constraint programming for combinatorial optimization purposes. The chapters that follow present five generally applicable hybridization strategies, with exemplary case studies on selected problems: incomplete solution representations and decoders; problem instance reduction; large neighborhood search; parallel non-independent construction of solutions within metaheuristics; and hybridization based on complete solution archives. The authors are among the leading researchers in the hybridization of metaheuristics with other techniques for optimization, and their work reflects the broad shift to problem-oriented rather than algorithm-oriented approaches, enabling faster and more effective implementation in real-life applications. This hybridization is not restricted to different variants of metaheuristics but includes, for example, the combination of mathematical programming, dynamic programming, or constraint programming with metaheuristics, reflecting cross-fertilization in fields such as optimization, algorithmics, mathematical modeling, operations research, statistics, and simulation. The book is a valuable introduction and reference for researchers and graduate students in these domains. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Computational intelligence. 
650 0 |a Operations research. 
650 0 |a Mathematical optimization. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Optimization. 
700 1 |a Raidl, Günther R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319308821 
776 0 8 |i Printed edition:  |z 9783319308845 
776 0 8 |i Printed edition:  |z 9783319809076 
830 0 |a Artificial Intelligence: Foundations, Theory, and Algorithms,  |x 2365-306X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30883-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)