Cargando…

Python for Probability, Statistics, and Machine Learning

This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Unpingco, José (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30717-6
003 DE-He213
005 20220113004513.0
007 cr nn 008mamaa
008 160316s2016 sz | s |||| 0|eng d
020 |a 9783319307176  |9 978-3-319-30717-6 
024 7 |a 10.1007/978-3-319-30717-6  |2 doi 
050 4 |a TK5101-5105.9 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Unpingco, José.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Python for Probability, Statistics, and Machine Learning  |h [electronic resource] /  |c by José Unpingco. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 276 p. 110 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Getting Started with Scientific Python -- Probability -- Statistics -- Machine Learning -- Notation. 
520 |a This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming. Explains how to simulate, conceptualize, and visualize random statistical processes and apply machine learning methods; Connects to key open-source Python communities and corresponding modules focused on the latest developments in this area; Outlines probability, statistics, and machine learning concepts using an intuitive visual approach, backed up with corresponding visualization codes. 
650 0 |a Telecommunication. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Statistics . 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Data mining. 
650 1 4 |a Communications Engineering, Networks. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319307152 
776 0 8 |i Printed edition:  |z 9783319307169 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30717-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)