Cargando…

Search Techniques in Intelligent Classification Systems

A unified methodology for categorizing various complex objects is presented in this book. Through probability theory, novel asymptotically minimax criteria suitable for practical applications in imaging and data analysis are examined including the special cases such as the Jensen-Shannon divergence...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Savchenko, Andrey V. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30515-8
003 DE-He213
005 20220112222534.0
007 cr nn 008mamaa
008 160502s2016 sz | s |||| 0|eng d
020 |a 9783319305158  |9 978-3-319-30515-8 
024 7 |a 10.1007/978-3-319-30515-8  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Savchenko, Andrey V.  |e author.  |0 (orcid)0000-0001-6196-0564  |1 https://orcid.org/0000-0001-6196-0564  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Search Techniques in Intelligent Classification Systems  |h [electronic resource] /  |c by Andrey V. Savchenko. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 82 p. 28 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2191-575X 
505 0 |a 1.Intelligent Classification Systems -- 2. Statistical Classification of Audiovisual Data -- 3. Hierarchical Intelligent Classification Systems -- 4. Approximate Nearest Neighbor Search in Intelligent Classification Systems -- 5. Search in Voice Control Systems -- 6. Conclusion. . 
520 |a A unified methodology for categorizing various complex objects is presented in this book. Through probability theory, novel asymptotically minimax criteria suitable for practical applications in imaging and data analysis are examined including the special cases such as the Jensen-Shannon divergence and the probabilistic neural network. An optimal approximate nearest neighbor search algorithm, which allows faster classification of databases is featured. Rough set theory, sequential analysis and granular computing are used to improve performance of the hierarchical classifiers. Practical examples in face identification (including deep neural networks), isolated commands recognition in voice control system and classification of visemes captured by the Kinect depth camera are included. This approach creates fast and accurate search procedures by using exact probability densities of applied dissimilarity measures. This book can be used as a guide for independent study and as supplementary material for a technically oriented graduate course in intelligent systems and data mining. Students and researchers interested in the theoretical and practical aspects of intelligent classification systems will find answers to: - Why conventional implementation of the naive Bayesian approach does not work well in image classification? - How to deal with insufficient performance of hierarchical classification systems? - Is it possible to prevent an exhaustive search of the nearest neighbor in a database? 
650 0 |a Mathematical optimization. 
650 0 |a Pattern recognition systems. 
650 0 |a Machinery. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Potential theory (Mathematics). 
650 1 4 |a Optimization. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Machinery and Machine Elements. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Complex Systems. 
650 2 4 |a Potential Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319305134 
776 0 8 |i Printed edition:  |z 9783319305141 
830 0 |a SpringerBriefs in Optimization,  |x 2191-575X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30515-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)