Cargando…

Big Data Optimization: Recent Developments and Challenges

The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Emrouznejad, Ali (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Studies in Big Data, 18
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-30265-2
003 DE-He213
005 20220114143238.0
007 cr nn 008mamaa
008 160526s2016 sz | s |||| 0|eng d
020 |a 9783319302652  |9 978-3-319-30265-2 
024 7 |a 10.1007/978-3-319-30265-2  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Big Data Optimization: Recent Developments and Challenges  |h [electronic resource] /  |c edited by Ali Emrouznejad. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 487 p. 182 illus., 160 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6511 ;  |v 18 
505 0 |a Big data: Who, What and Where? Social, Cognitive and Journals Map of Big Data Publications with Focus on Optimization -- Setting up a Big Data Project: Challenges, Opportunities, Technologies and Optimization -- Optimizing Intelligent Reduction Techniques for Big Data -- Performance Tools for Big Data Optimization -- Optimising Big Images -- Interlinking Big Data to Web of Data -- Topology, Big Data and Optimization -- Applications of Big Data Analytics Tools for Data Management -- Optimizing Access Policies for Big Data Repositories: Latency Variables and the Genome Commons -- Big Data Optimization via Next Generation Data Center Architecture -- Big Data Optimization within Real World Monitoring Constraints -- Smart Sampling and Optimal Dimensionality Reduction of Big Data Using Compressed Sensing -- Optimized Management of BIG Data Produced in Brain Disorder Rehabilitation -- Big Data Optimization in Maritime Logistics -- Big Network Analytics Based on Nonconvex Optimization -- Large-scale and Big Optimization Based on Hadoop -- Computational Approaches in Large-Scale Unconstrained Optimization -- Numerical Methods for Large-Scale Nonsmooth Optimization -- Metaheuristics for Continuous Optimization of High-Dimensional Problems: State of the Art and Perspectives -- Convergent Parallel Algorithms for Big Data Optimization Problems. 
520 |a The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Operations research. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Operations Research and Decision Theory. 
700 1 |a Emrouznejad, Ali.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319302638 
776 0 8 |i Printed edition:  |z 9783319302645 
776 0 8 |i Printed edition:  |z 9783319807652 
830 0 |a Studies in Big Data,  |x 2197-6511 ;  |v 18 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-30265-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)