Cargando…

The Callias Index Formula Revisited

These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and rel...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gesztesy, Fritz (Autor), Waurick, Marcus (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes in Mathematics, 2157
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-29977-8
003 DE-He213
005 20220116005330.0
007 cr nn 008mamaa
008 160628s2016 sz | s |||| 0|eng d
020 |a 9783319299778  |9 978-3-319-29977-8 
024 7 |a 10.1007/978-3-319-29977-8  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Gesztesy, Fritz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Callias Index Formula Revisited  |h [electronic resource] /  |c by Fritz Gesztesy, Marcus Waurick. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 192 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2157 
505 0 |a Introduction.-Notational Conventions -- Functional Analytic -- On Schatten-von Neumann Classes and Trace Class -- Pointwise Estimates for Integral Kernels -- Dirac-Type -- Derivation of the Trace Formula - The Trace Class Result -- Derivation of the Trace Formula - Diagonal Estimates -- The Case n = 3 -- The Index Theorem and Some Consequences -- Perturbation Theory for the Helmholtz Equation -- The Proof of Theorem 10.2: The Smooth Case -- The Proof of Theorem 10.2: The General Case -- A Particular Class of Non-Fredholm Operators L and Their Generalized Witten Index -- A: Construction of the Euclidean Dirac Algebra -- B: A Counterexample to [22, Lemma 5] -- References -- Index. 
520 |a These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970's, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hörmander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index. 
650 0 |a Differential equations. 
650 0 |a Operator theory. 
650 0 |a Functional analysis. 
650 1 4 |a Differential Equations. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Waurick, Marcus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319299761 
776 0 8 |i Printed edition:  |z 9783319299785 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2157 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-29977-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)