Cargando…

K3 Surfaces and Their Moduli

This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like "The Moduli Space of Curves" and &...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Faber, Carel (Editor ), Farkas, Gavril (Editor ), van der Geer, Gerard (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edición:1st ed. 2016.
Colección:Progress in Mathematics, 315
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-29959-4
003 DE-He213
005 20220115201900.0
007 cr nn 008mamaa
008 160422s2016 sz | s |||| 0|eng d
020 |a 9783319299594  |9 978-3-319-29959-4 
024 7 |a 10.1007/978-3-319-29959-4  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
245 1 0 |a K3 Surfaces and Their Moduli  |h [electronic resource] /  |c edited by Carel Faber, Gavril Farkas, Gerard van der Geer. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a IX, 399 p. 14 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 315 
505 0 |a Introduction -- Samuel Boissière, Andrea Cattaneo, Marc Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface -- Igor Dolgachev: Orbital counting of curves on algebraic surfaces and sphere packings -- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces -- Brendan Hassett and Yuri Tschinkel: Extremal rays and automorphisms of holomorphic symplectic varieties -- Gert Heckman and Sander Rieken: An odd presentation for W(E_6) -- S. Katz, A. Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On the motivic stable pairs invariants of K3 surfaces -- Shigeyuki Kondö: The Igusa quartic and Borcherds products -- Christian Liedtke: Lectures on supersingular K3 surfaces and the crystalline Torelli theorem -- Daisuke Matsushita: On deformations of Lagrangian fibrations -- G. Oberdieck and R. Pandharipande: Curve counting on K3 x E, the Igusa cusp form X_10, and descendent integration -- Keiji Oguiso: Simple abelian varieties and primitive automorphisms of null entropy of surfaces -- Ichiro Shimada: The automorphism groups of certain singular K3 surfaces and an Enriques surface -- Alessandro Verra: Geometry of genus 8 Nikulin surfaces and rationality of their moduli -- Claire Voisin: Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties. 
520 |a This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like "The Moduli Space of Curves" and "Moduli of Abelian Varieties," which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin. 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebraic Geometry. 
700 1 |a Faber, Carel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Farkas, Gavril.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a van der Geer, Gerard.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319299587 
776 0 8 |i Printed edition:  |z 9783319299600 
776 0 8 |i Printed edition:  |z 9783319806969 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 315 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-29959-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)