|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-29206-9 |
003 |
DE-He213 |
005 |
20220114191217.0 |
007 |
cr nn 008mamaa |
008 |
161011s2016 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319292069
|9 978-3-319-29206-9
|
024 |
7 |
|
|a 10.1007/978-3-319-29206-9
|2 doi
|
050 |
|
4 |
|a QA76.9.D343
|
072 |
|
7 |
|a UNF
|2 bicssc
|
072 |
|
7 |
|a UYQE
|2 bicssc
|
072 |
|
7 |
|a COM021030
|2 bisacsh
|
072 |
|
7 |
|a UNF
|2 thema
|
072 |
|
7 |
|a UYQE
|2 thema
|
082 |
0 |
4 |
|a 006.312
|2 23
|
100 |
1 |
|
|a Akerkar, Rajendra.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Intelligent Techniques for Data Science
|h [electronic resource] /
|c by Rajendra Akerkar, Priti Srinivas Sajja.
|
250 |
|
|
|a 1st ed. 2016.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a XVI, 272 p. 121 illus., 57 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Preface -- Introduction -- Data Analytics -- Basic Learning Algorithms -- Fuzzy Logic -- Artificial Neural Networks -- Genetic Algorithms and Evolutionary Computing -- Other Metaheuristics and Classification Approaches -- Analytics and Big Data -- Data Analytics Using R -- Appendix I: Tools for Data Science -- Appendix II: Tools for Computational Intelligence.
|
520 |
|
|
|a This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions. The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Knowledge management.
|
650 |
1 |
4 |
|a Data Mining and Knowledge Discovery.
|
650 |
2 |
4 |
|a Artificial Intelligence.
|
650 |
2 |
4 |
|a Knowledge Management.
|
700 |
1 |
|
|a Sajja, Priti Srinivas.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319292052
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319292076
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319805146
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-29206-9
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|