Cargando…

Context-Enhanced Information Fusion Boosting Real-World Performance with Domain Knowledge /

This interdisciplinary text/reference reviews the fundamental theory and latest methods for including contextual information in fusion process design and implementation. Chapters are contributed by the foremost international experts, spanning numerous developments and applications. The book highligh...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Snidaro, Lauro (Editor ), García, Jesús (Editor ), Llinas, James (Editor ), Blasch, Erik (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-28971-7
003 DE-He213
005 20220115213008.0
007 cr nn 008mamaa
008 160525s2016 sz | s |||| 0|eng d
020 |a 9783319289717  |9 978-3-319-28971-7 
024 7 |a 10.1007/978-3-319-28971-7  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
245 1 0 |a Context-Enhanced Information Fusion  |h [electronic resource] :  |b Boosting Real-World Performance with Domain Knowledge /  |c edited by Lauro Snidaro, Jesús García, James Llinas, Erik Blasch. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVIII, 703 p. 242 illus., 229 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Part I: Foundations -- Context and Fusion: Definitions, Terminology -- Part II: Concepts of Context for Fusion -- Formalization of "Context" for Information Fusion -- Context as an Uncertain Source -- Contextual Tracking Approaches in Information Fusion -- Context Assumptions for Threat Assessment Systems -- Context-Aware Knowledge Fusion for Decision Support -- Part III: Systems Philosophy of Contextual Fusion -- System-Level Use of Contextual Information -- Architectural Aspects for Context Exploitation in Information Fusion -- Middleware for Exchange and validation of context data and information -- Modeling User Behaviors to Enable Context-Aware Proactive Decision Support -- Part IV: Mathematical Characterization of Context -- Supervising the Fusion Process by Context Analysis for Target Tracking -- Context Exploitation for Target Tracking -- Contextual Tracking in Surface Applications: Algorithms and Design Examples -- Context Relevance for Text Analysis and Enhancement for Soft Information Fusion -- Algorithms for Context Learning and Information Representation for Multi-Sensor Teams -- Part V: Context in Hard/Soft Fusion -- Context for Dynamic and Multi-Level Fusion -- Multi-Level Fusion of Hard and Soft Information for Intelligence -- Context-Based Fusion of Physical and Human Data for Level 5 Information Fusion -- Context Understanding from Query-Based Streaming Video -- Part VI: Applications of Context Approaches to Fusion -- The Role of Context in Multiple Sensor Systems for Public Security -- Entity Association Using Context for Wide-Area Motion Imagery Target Tracking -- Ground Target Tracking Applications: Design Examples for Military and Civil Domains -- Context-Based Situation Recognition in Computer Vision Systems -- Data Fusion Enhanced with Context Information for Road Safety Application -- Context in Robotics and Information Fusion. 
520 |a This interdisciplinary text/reference reviews the fundamental theory and latest methods for including contextual information in fusion process design and implementation. Chapters are contributed by the foremost international experts, spanning numerous developments and applications. The book highlights high- and low-level information fusion problems, performance evaluation under highly demanding conditions, and design principles. A particular focus is placed on holistic approaches that integrate research from different communities, emphasizing the benefit of combining different techniques to overcome the limitations of a single perspective or approach. Topics and features: · Introduces the essential terminology and core elements in information fusion and context, conveyed with the support of the JDL/DFIG data fusion model · Presents key themes for context-enhanced information fusion, including topics derived from target tracking, decision support and threat assessment · Discusses design issues in developing context-aware fusion systems, proposing several architectures optimized for context access and discovery · Provides mathematical grounds for modeling the contextual influences in representative fusion problems, such as sensor quality assessment, target tracking, robotics, and text analysis · Describes the fusion of device-generated (hard) data with human-generated (soft) data · Reviews a diverse range of applications where the exploitation of contextual information in the fusion process boosts system performance This authoritative volume will be of great use to researchers, academics, and practitioners pursuing applications where information fusion offers a solution. The broad coverage will appeal to those involved in a variety of disciplines, from machine learning and data mining, to machine vision, decision support systems, and systems engineering. Dr. Lauro Snidaro is an Assistant Professor in the Department of Mathematics and Computer Science at the University of Udine, Italy. Dr. Jesús García is an Associate Professor in the Computer Science and Engineering Department at the Carlos III University of Madrid, Spain. Dr. James Llinas is an Emeritus Professor in the Department of Industrial and Systems Engineering, and in the Department of Electrical Engineering, at the State University of New York at Buffalo, NY, USA. Dr. Erik Blasch is a Principal Scientist at the Air Force Research Laboratory Information Directorate (AFRL/RIEA) in Rome, NY, USA. The editors and contributors have all been leading experts within the international society of information fusion (www.isif.org). 
650 0 |a Pattern recognition systems. 
650 0 |a Application software. 
650 0 |a Artificial intelligence. 
650 0 |a Computer simulation. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer Modelling. 
700 1 |a Snidaro, Lauro.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a García, Jesús.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Llinas, James.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Blasch, Erik.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319289694 
776 0 8 |i Printed edition:  |z 9783319289700 
776 0 8 |i Printed edition:  |z 9783319804644 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-28971-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)