Cargando…

Link Prediction in Social Networks Role of Power Law Distribution /

This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider node...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Virinchi, Srinivas (Autor), Mitra, Pabitra (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-28922-9
003 DE-He213
005 20220114160631.0
007 cr nn 008mamaa
008 160122s2016 sz | s |||| 0|eng d
020 |a 9783319289229  |9 978-3-319-28922-9 
024 7 |a 10.1007/978-3-319-28922-9  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Virinchi, Srinivas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Link Prediction in Social Networks  |h [electronic resource] :  |b Role of Power Law Distribution /  |c by Srinivas Virinchi, Pabitra Mitra. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 67 p. 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Link Prediction Using Degree Thresholding -- Locally Adaptive Link Prediction -- Two Phase Framework for Link Prediction -- Applications of Link Prediction -- Conclusion. 
520 |a This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph. 
650 0 |a Data mining. 
650 0 |a Computer networks . 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Mitra, Pabitra.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319289212 
776 0 8 |i Printed edition:  |z 9783319289236 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-28922-9  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)