Cargando…

Proceedings of ELM-2015 Volume 1 Theory, Algorithms and Applications (I) /

This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and pra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cao, Jiuwen (Editor ), Mao, Kezhi (Editor ), Wu, Jonathan (Editor ), Lendasse, Amaury (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Proceedings in Adaptation, Learning and Optimization, 6
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-28397-5
003 DE-He213
005 20220117114411.0
007 cr nn 008mamaa
008 151231s2016 sz | s |||| 0|eng d
020 |a 9783319283975  |9 978-3-319-28397-5 
024 7 |a 10.1007/978-3-319-28397-5  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Proceedings of ELM-2015 Volume 1  |h [electronic resource] :  |b Theory, Algorithms and Applications (I) /  |c edited by Jiuwen Cao, Kezhi Mao, Jonathan Wu, Amaury Lendasse. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 532 p. 213 illus., 93 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Proceedings in Adaptation, Learning and Optimization,  |x 2363-6092 ;  |v 6 
505 0 |a Efficient Batch Parallel Online Sequential Extreme Learning Machine Algorithm Based on MapReduce -- Fixed-Point Evaluation of Extreme Learning Machine for Classification -- Multi-Layer Online Sequential Extreme Learning Machine for Image Classification -- ELM Meets Urban Computing: Ensemble Urban Data For Smart City Applications -- Local and Global Unsupervised Kernel Extreme Learning Machine and Its Application in Nonlinear Process Fault Detection -- Parallel Multi-Graph Classification Using Extreme Learning Machine and MapReduce -- Extreme Learning Machine for Large-Scale Graph Classification Based on MapReduce -- The Distance-based Representative Skyline Calculation using Unsupervised Extreme Learning Machines -- Multi-label Text Categorization Using L21-NormMinimization Extreme Learning Machine -- Cluster-based Outlier Detection Using Unsupervised Extreme Learning Machines -- Segmentation of the Left Ventricle in Cardiac MRI Using an ELM Model -- Channel Estimation Based on Extreme Learning Machine for High Speed Environments -- MIMO Modeling Based on Extreme Learning Machine -- Graph Classification based on Sparse Graph Feature Selection and Extreme Learning Machine -- Time Series Prediction Based on Online Sequential Improved Error Minimized Extreme Learning Machine -- Adaptive Input Shaping for Flexible Systems using an Extreme Learning Machine Algorithm Identification -- Kernel Based Semi-supervised Extreme Learning Machine and the Application in Traffic Congestion Evaluation -- Improvement of ELM Algorithm for Multi-Object Identification in Gesture Interaction -- SVM and ELM: Who Wins? Object Recognition with Deep Convolutional Features from ImageNet -- Learning with Similarity Functions: a Novel Design for the Extreme Learning Machine -- A Semi-Supervised Low Rank Kernel Learning Algorithm via Extreme Learning Machine -- Application of Extreme Learning Machine on Large Scale Traffic Congestion Prediction -- Extreme Learning Machine-Guided Collaborative Coding for Remote Sensing Image Classification -- Distributed Weighted Extreme Learning Machine for Big Imbalanced Data Learning -- NMR Image Segmentation based on Unsupervised Extreme Learning Machine -- Annotating Location Semantic Tags in LBSN Using Extreme Learning Machine -- Feature Extraction of Motor Imagery EEG based on Extreme Learning Machine Auto-Encoder -- Multimodal Fusion using Kernel-based ELM for Video Emotion Recognition -- Equality Constrained-Optimization-Based Semi-Supervised ELM for Modeling -- Signal Strength Temporal Variation in Indoor Location Estimation Extreme Learning Machine with Gaussian Kernel Based Relevance Feedback Scheme for Image Retrieval -- Routing Tree Maintenance based on Trajectory Prediction in Mobile Sensor Networks -- Two-Stage Hybrid Extreme Learning Machine for Sequential Imbalanced Data -- Feature Selection and Modelling of a Steam Turbine from a Combined Heat and Power Plant Using ELM -- On The Construction of Extreme Learning Machine for One Class Classifier -- Record Linkage for Event Identification in XML Feeds Stream Using ELM -- Timeliness Online Regularized Extreme Learning Machine -- An Efficient High-dimensional Big Data Storage Structure Based on US-ELM -- An Enhanced Extreme Learning Machine for Efficient Small Sample Classification -- Code Generation Technology of Digital Satellite -- ELM-based Velocity Inversion for Sandstone Reservoir in Yanqi Gas-Field -- Class-Constrained Extreme Learning Machine. . 
520 |a This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 0 |a Data mining. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computational and Systems Biology. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Cao, Jiuwen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mao, Kezhi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wu, Jonathan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lendasse, Amaury.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319283968 
776 0 8 |i Printed edition:  |z 9783319283982 
776 0 8 |i Printed edition:  |z 9783319803449 
830 0 |a Proceedings in Adaptation, Learning and Optimization,  |x 2363-6092 ;  |v 6 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-28397-5  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)