Cargando…

Self-Organizing Migrating Algorithm Methodology and Implementation /

This book brings together the current state of-the-art research in Self Organizing Migrating Algorithm (SOMA) as a novel population-based evolutionary algorithm, modeled on the predator-prey relationship, by its leading practitioners. As the first ever book on SOMA, this book is geared towards gradu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Davendra, Donald (Editor ), Zelinka, Ivan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Studies in Computational Intelligence, 626
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-28161-2
003 DE-He213
005 20220120214558.0
007 cr nn 008mamaa
008 160204s2016 sz | s |||| 0|eng d
020 |a 9783319281612  |9 978-3-319-28161-2 
024 7 |a 10.1007/978-3-319-28161-2  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Self-Organizing Migrating Algorithm  |h [electronic resource] :  |b Methodology and Implementation /  |c edited by Donald Davendra, Ivan Zelinka. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVIII, 289 p. 128 illus., 87 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 626 
520 |a This book brings together the current state of-the-art research in Self Organizing Migrating Algorithm (SOMA) as a novel population-based evolutionary algorithm, modeled on the predator-prey relationship, by its leading practitioners. As the first ever book on SOMA, this book is geared towards graduate students, academics and researchers, who are looking for a good optimization algorithm for their applications. This book presents the methodology of SOMA, covering both the real and discrete domains, and its various implementations in different research areas. The easy-to-follow and implement methodology used in the book will make it easier for a reader to implement, modify and utilize SOMA. . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Optimization. 
700 1 |a Davendra, Donald.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zelinka, Ivan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319281599 
776 0 8 |i Printed edition:  |z 9783319281605 
776 0 8 |i Printed edition:  |z 9783319802862 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 626 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-28161-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)