Cargando…

Lasso-MPC - Predictive Control with ℓ1-Regularised Least Squares

This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an ℓ1-regularised least squares loss function, in which the control error variance competes with the sum of input channels ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gallieri, Marco (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-27963-3
003 DE-He213
005 20220120205756.0
007 cr nn 008mamaa
008 160331s2016 sz | s |||| 0|eng d
020 |a 9783319279633  |9 978-3-319-27963-3 
024 7 |a 10.1007/978-3-319-27963-3  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Gallieri, Marco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lasso-MPC - Predictive Control with ℓ1-Regularised Least Squares  |h [electronic resource] /  |c by Marco Gallieri. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXX, 187 p. 64 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction -- Background -- Principles of LASSO MPC -- Version 1: `1-Input Regularised Quadratic MPC.-  Version 2: LASSO MPC with stabilising terminal cost -- Design of LASSO MPC for prioritised and auxiliary actuators -- Robust Tracking with Soft-constraints -- Ship roll reduction with rudder and fins -- Concluding Remarks. 
520 |a This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an ℓ1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. While standard control techniques lead to continuous movements of all actuators, this approach enables a selected subset of actuators to be used, the others being brought into play in exceptional circumstances. The same approach can also be used to obtain asynchronous actuator interventions, so that control actions are only taken in response to large disturbances. This thesis presents a straightforward and systematic approach to achieving these practical properties, which are ignored by mainstream control theory. 
650 0 |a Control engineering. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Computer simulation. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Computer Modelling. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319279619 
776 0 8 |i Printed edition:  |z 9783319279626 
776 0 8 |i Printed edition:  |z 9783319802473 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-27963-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)