Cargando…

The Spectrum of Hyperbolic Surfaces

This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called "arithmetic hyperbolic surfaces", the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bergeron, Nicolas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-27666-3
003 DE-He213
005 20220116153335.0
007 cr nn 008mamaa
008 160219s2016 sz | s |||| 0|eng d
020 |a 9783319276663  |9 978-3-319-27666-3 
024 7 |a 10.1007/978-3-319-27666-3  |2 doi 
050 4 |a QA685 
072 7 |a PBML  |2 bicssc 
072 7 |a MAT012040  |2 bisacsh 
072 7 |a PBML  |2 thema 
082 0 4 |a 516.9  |2 23 
100 1 |a Bergeron, Nicolas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Spectrum of Hyperbolic Surfaces  |h [electronic resource] /  |c by Nicolas Bergeron. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 370 p. 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Preface -- Introduction -- Arithmetic Hyperbolic Surfaces -- Spectral Decomposition -- Maass Forms -- The Trace Formula -- Multiplicity of lambda1 and the Selberg Conjecture -- L-Functions and the Selberg Conjecture -- Jacquet-Langlands Correspondence -- Arithmetic Quantum Unique Ergodicity -- Appendices -- References -- Index of notation -- Index -- Index of names. 
520 |a This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called "arithmetic hyperbolic surfaces", the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics. 
650 0 |a Geometry, Hyperbolic. 
650 0 |a Harmonic analysis. 
650 0 |a Dynamical systems. 
650 1 4 |a Hyperbolic Geometry. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319276649 
776 0 8 |i Printed edition:  |z 9783319276656 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-27666-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)