Cargando…

Navier-Stokes Equations on R3 × [0, T]

In this monograph, leading researchers in the world of numerical analysis, partial differential equations, and hard computational problems study the properties of solutions of the Navier-Stokes partial differential equations on (x, y, z, t) ∈ ℝ3 × [0, T]. Initially converting the PDE to a system of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Stenger, Frank (Autor), Tucker, Don (Autor), Baumann, Gerd (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-27526-0
003 DE-He213
005 20220203105814.0
007 cr nn 008mamaa
008 160923s2016 sz | s |||| 0|eng d
020 |a 9783319275260  |9 978-3-319-27526-0 
024 7 |a 10.1007/978-3-319-27526-0  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Stenger, Frank.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a  Navier-Stokes Equations on R3 × [0, T]  |h [electronic resource] /  |c by Frank Stenger, Don Tucker, Gerd Baumann. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 226 p. 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction, PDE, and IE Formulations -- Spaces of Analytic Functions -- Spaces of Solution of the N-S Equations -- Proof of Convergence of Iteration 1.6.3 -- Numerical Methods for Solving N-S Equations -- Sinc Convolution Examples -- Implementation Notes -- Result Notes. 
520 |a In this monograph, leading researchers in the world of numerical analysis, partial differential equations, and hard computational problems study the properties of solutions of the Navier-Stokes partial differential equations on (x, y, z, t) ∈ ℝ3 × [0, T]. Initially converting the PDE to a system of integral equations, the authors then describe spaces A of analytic functions that house solutions of this equation, and show that these spaces of analytic functions are dense in the spaces S of rapidly decreasing and infinitely differentiable functions. This method benefits from the following advantages: The functions of S are nearly always conceptual rather than explicit Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties When methods of approximation are applied to functions of A they converge at an exponential rate, whereas methods of approximation applied to the functions of S converge only at a polynomial rate Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more efficient method of solution, including accurate error bounds Following the proofs of denseness, the authors prove the existence of a solution of the integral equations in the space of functions A ∩ ℝ3 × [0, T], and provide an explicit novel algorithm based on Sinc approximation and Picard-like iteration for computing the solution. Additionally, the authors include appendices that provide a custom Mathematica program for computing solutions based on the explicit algorithmic approximation procedure, and which supply explicit illustrations of these computed solutions. 
650 0 |a Differential equations. 
650 1 4 |a Differential Equations. 
700 1 |a Tucker, Don.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Baumann, Gerd.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319275246 
776 0 8 |i Printed edition:  |z 9783319275253 
776 0 8 |i Printed edition:  |z 9783319801629 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-27526-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)