Cargando…

Human Activity Recognition and Prediction

This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discuss...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Fu, Yun (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-27004-3
003 DE-He213
005 20220115004611.0
007 cr nn 008mamaa
008 151223s2016 sz | s |||| 0|eng d
020 |a 9783319270043  |9 978-3-319-27004-3 
024 7 |a 10.1007/978-3-319-27004-3  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Human Activity Recognition and Prediction  |h [electronic resource] /  |c edited by Yun Fu. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VII, 174 p. 70 illus., 64 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Action and Activities -- Action Recognition and Human Interaction -- Multimodal Action Recognition -- RGB-D Action Recognition -- Actionlets and Activity Prediction -- Time Series Modeling for Activity Prediction -- RGB-D Action Prediction. 
520 |a This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques. . 
650 0 |a Signal processing. 
650 0 |a Computer vision. 
650 0 |a Biometric identification. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computer Vision. 
650 2 4 |a Biometrics. 
700 1 |a Fu, Yun.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319270029 
776 0 8 |i Printed edition:  |z 9783319270036 
776 0 8 |i Printed edition:  |z 9783319800554 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-27004-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)