Cargando…

Big Data Analysis: New Algorithms for a New Society

This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area. It demonstrates that Big Data Analysis opens up new research problems which were either never considered before, or were only considered within a l...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Japkowicz, Nathalie (Editor ), Stefanowski, Jerzy (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Studies in Big Data, 16
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-26989-4
003 DE-He213
005 20220114194856.0
007 cr nn 008mamaa
008 151216s2016 sz | s |||| 0|eng d
020 |a 9783319269894  |9 978-3-319-26989-4 
024 7 |a 10.1007/978-3-319-26989-4  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Big Data Analysis: New Algorithms for a New Society  |h [electronic resource] /  |c edited by Nathalie Japkowicz, Jerzy Stefanowski. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 329 p. 63 illus., 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6511 ;  |v 16 
505 0 |a A Machine Learning Perspective on Big Data Analysis -- An Insight on Big Data Analytics -- Toward Problem Solving Support based on Big Data and Domain Knowledge: Interactive Granular Computing and Adaptive Judgment -- An overview of Conceptdrift Applications.- Analysis of Text-Enriched Heterogeneous Information Networks.- Implementing Big Data Analytics Projects in Business -- Data mining in Business: Current Advances and Future Challenges -- Industrial-Scale Ad Hoc Risk Analytics Using MapReduce -- Big Data and the Internet of Things -- Social Network Analysis in Streaming Call Graphs.- Scalable Cloud-Based Data Analysis Software Systems for Big Data From Next Generation Sequencing -- Discovering Networks of Interdependent Features in High-Dimensional Problems -- Final Remarks on Big Data Analysis and its Impact on Society and Science. 
520 |a This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area. It demonstrates that Big Data Analysis opens up new research problems which were either never considered before, or were only considered within a limited range. In addition to providing methodological discussions on the principles of mining Big Data and the difference between traditional statistical data analysis and newer computing frameworks, this book presents recently developed algorithms affecting such areas as business, financial forecasting, human mobility, the Internet of Things, information networks, bioinformatics, medical systems and life science. It explores, through a number of specific examples, how the study of Big Data Analysis has evolved and how it has started and will most likely continue to affect society. While the benefits brought upon by Big Data Analysis are underlined, the book also discusses some of the warnings that have been issued concerning the potential dangers of Big Data Analysis along with its pitfalls and challenges. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Japkowicz, Nathalie.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stefanowski, Jerzy.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319269870 
776 0 8 |i Printed edition:  |z 9783319269887 
776 0 8 |i Printed edition:  |z 9783319800530 
830 0 |a Studies in Big Data,  |x 2197-6511 ;  |v 16 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-26989-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)