Cargando…

Minimal Free Resolutions over Complete Intersections

This book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such resolutions have attracted attention ever since the elegant construction of the minimal free resolution of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Eisenbud, David (Autor), Peeva, Irena (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes in Mathematics, 2152
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-26437-0
003 DE-He213
005 20230706144416.0
007 cr nn 008mamaa
008 160308s2016 sz | s |||| 0|eng d
020 |a 9783319264370  |9 978-3-319-26437-0 
024 7 |a 10.1007/978-3-319-26437-0  |2 doi 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.44  |2 23 
100 1 |a Eisenbud, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Minimal Free Resolutions over Complete Intersections  |h [electronic resource] /  |c by David Eisenbud, Irena Peeva. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 107 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2152 
520 |a This book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such resolutions have attracted attention ever since the elegant construction of the minimal free resolution of the residue field by Tate in 1957. The theory extends the theory of matrix factorizations of a non-zero divisor, initiated by Eisenbud in 1980, which yields a description of the eventual structure of minimal free resolutions over a hypersurface ring. Matrix factorizations have had many other uses in a wide range of mathematical fields, from singularity theory to mathematical physics. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Algebraic geometry. 
650 0 |a Algebra, Homological. 
650 0 |a Mathematical physics. 
650 1 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Peeva, Irena.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319264363 
776 0 8 |i Printed edition:  |z 9783319264387 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2152 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-26437-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)