Cargando…

Applications of Soft Computing in Time Series Forecasting Simulation and Modeling Techniques /

This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Singh, Pritpal (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Studies in Fuzziness and Soft Computing, 330
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-26293-2
003 DE-He213
005 20220111072741.0
007 cr nn 008mamaa
008 151122s2016 sz | s |||| 0|eng d
020 |a 9783319262932  |9 978-3-319-26293-2 
024 7 |a 10.1007/978-3-319-26293-2  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Singh, Pritpal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Applications of Soft Computing in Time Series Forecasting  |h [electronic resource] :  |b Simulation and Modeling Techniques /  |c by Pritpal Singh. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXI, 158 p. 24 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 330 
520 |a This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computing (EC), focusing on how these techniques can be integrated into different phases of the FTS modeling approach. In particular, the book describes novel methods resulting from the hybridization of FTS modeling approaches with neural networks and particle swarm optimization. It also demonstrates how a new ANN-based model can be successfully applied in the context of predicting Indian summer monsoon rainfall. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to fuzzy time series modeling, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and government organizations.  . 
650 0 |a Computational intelligence. 
650 0 |a Nonlinear Optics. 
650 0 |a Computer simulation. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Nonlinear Optics. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319262925 
776 0 8 |i Printed edition:  |z 9783319262949 
776 0 8 |i Printed edition:  |z 9783319387260 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 330 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-26293-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)