Cargando…

Quantitative Modeling of Operational Risk in Finance and Banking Using Possibility Theory

This book offers a comprehensive guide to the modelling of operational risk using possibility theory. It provides a set of methods for measuring operational risks under a certain degree of vagueness and impreciseness, as encountered in real-life data. It shows how possibility theory and indeterminat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chaudhuri, Arindam (Autor), Ghosh, Soumya K. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Studies in Fuzziness and Soft Computing, 331
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-26039-6
003 DE-He213
005 20220115225654.0
007 cr nn 008mamaa
008 151031s2016 sz | s |||| 0|eng d
020 |a 9783319260396  |9 978-3-319-26039-6 
024 7 |a 10.1007/978-3-319-26039-6  |2 doi 
050 4 |a TA352-356 
050 4 |a QC20.7.N6 
072 7 |a TBJ  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Chaudhuri, Arindam.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantitative Modeling of Operational Risk in Finance and Banking Using Possibility Theory  |h [electronic resource] /  |c by Arindam Chaudhuri, Soumya K. Ghosh. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 190 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 331 
520 |a This book offers a comprehensive guide to the modelling of operational risk using possibility theory. It provides a set of methods for measuring operational risks under a certain degree of vagueness and impreciseness, as encountered in real-life data. It shows how possibility theory and indeterminate uncertainty-encompassing degrees of belief can be applied in analysing the risk function, and describes the parametric g-and-h distribution associated with extreme value theory as an interesting candidate in this regard. The book offers a complete assessment of fuzzy methods for determining both value at risk (VaR) and subjective value at risk (SVaR), together with a stability estimation of VaR and SVaR. Based on the simulation studies and case studies reported on here, the possibilistic quantification of risk performs consistently better than the probabilistic model. Risk is evaluated by integrating two fuzzy techniques: the fuzzy analytic hierarchy process and the fuzzy extension of techniques for order preference by similarity to the ideal solution. Because of its specialized content, it is primarily intended for postgraduates and researchers with a basic knowledge of algebra and calculus, and can be used as reference guide for research-level courses on fuzzy sets, possibility theory and mathematical finance. The book also offers a useful source of information for banking and finance professionals investigating different risk-related aspects. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 0 |a Statistics . 
650 0 |a Operations research. 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Applied Dynamical Systems. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
700 1 |a Ghosh, Soumya K.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319260372 
776 0 8 |i Printed edition:  |z 9783319260389 
776 0 8 |i Printed edition:  |z 9783319374185 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 331 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-26039-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)