Cargando…

Dirichlet Forms Methods for Poisson Point Measures and Lévy Processes With Emphasis on the Creation-Annihilation Techniques /

A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the "lent particle method" it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bouleau, Nicolas (Autor), Denis, Laurent (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Probability Theory and Stochastic Modelling, 76
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-25820-1
003 DE-He213
005 20220116021742.0
007 cr nn 008mamaa
008 160107s2015 sz | s |||| 0|eng d
020 |a 9783319258201  |9 978-3-319-25820-1 
024 7 |a 10.1007/978-3-319-25820-1  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Bouleau, Nicolas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dirichlet Forms Methods for Poisson Point Measures and Lévy Processes  |h [electronic resource] :  |b With Emphasis on the Creation-Annihilation Techniques /  |c by Nicolas Bouleau, Laurent Denis. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 323 p. 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability Theory and Stochastic Modelling,  |x 2199-3149 ;  |v 76 
505 0 |a Introduction -- Notations and Basic Analytical Properties -- 1.Reminders on Poisson Random Measures, Lévy Processes and Dirichlet Forms -- 2.Dirichlet Forms and (EID) -- 3.Construction of the Dirichlet Structure on the Upper Space -- 4.The Lent Particle Formula and Related Formulae -- 5.Sobolev Spaces and Distributions on Poisson Space -- 6 -- Space-Time Setting and Processes -- 7.Applications to Stochastic Differential Equations driven by a Random Measure -- 8.Affine Processes, Rates Models -- 9.Non Poissonian Cases -- A.Error Structures -- B.The Co-Area Formula -- References. 
520 |a A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the "lent particle method" it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics). Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Lévy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calculus theory. This book will be of interest to researchers and graduate students in the fields of stochastic analysis and finance, and in the domain of statistical physics. Professors preparing courses on these topics will also find it useful. The prerequisite is a knowledge of probability theory. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory. 
700 1 |a Denis, Laurent.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319258188 
776 0 8 |i Printed edition:  |z 9783319258195 
776 0 8 |i Printed edition:  |z 9783319798455 
830 0 |a Probability Theory and Stochastic Modelling,  |x 2199-3149 ;  |v 76 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-25820-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)