Cargando…

Learning from Data Streams in Dynamic Environments

This book addresses the problems of modeling, prediction, classification, data understanding and processing in non-stationary and unpredictable environments. It presents major and well-known methods and approaches for the design of systems able to learn and to fully adapt its structure and to adjust...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sayed-Mouchaweh, Moamar (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Applied Sciences and Technology,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-25667-2
003 DE-He213
005 20220117162111.0
007 cr nn 008mamaa
008 151210s2016 sz | s |||| 0|eng d
020 |a 9783319256672  |9 978-3-319-25667-2 
024 7 |a 10.1007/978-3-319-25667-2  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Sayed-Mouchaweh, Moamar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Learning from Data Streams in Dynamic Environments  |h [electronic resource] /  |c by Moamar Sayed-Mouchaweh. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VIII, 75 p. 44 illus., 43 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-5318 
505 0 |a Introduction to learning -- Learning in dynamic environment -- Handling concept drift -- Summary and final comments. 
520 |a This book addresses the problems of modeling, prediction, classification, data understanding and processing in non-stationary and unpredictable environments. It presents major and well-known methods and approaches for the design of systems able to learn and to fully adapt its structure and to adjust its parameters according to the changes in their environments. Also presents the problem of learning in non-stationary environments, its interests, its applications and challenges and studies the complementarities and the links between the different methods and techniques of learning in evolving and non-stationary environments. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Telecommunication. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Communications Engineering, Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319256658 
776 0 8 |i Printed edition:  |z 9783319256665 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-5318 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-25667-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)