Cargando…

Error Estimates for Well-Balanced Schemes on Simple Balance Laws One-Dimensional Position-Dependent Models /

This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balan...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Amadori, Debora (Autor), Gosse, Laurent (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-24785-4
003 DE-He213
005 20220120222055.0
007 cr nn 008mamaa
008 151023s2015 sz | s |||| 0|eng d
020 |a 9783319247854  |9 978-3-319-24785-4 
024 7 |a 10.1007/978-3-319-24785-4  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Amadori, Debora.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Error Estimates for Well-Balanced Schemes on Simple Balance Laws  |h [electronic resource] :  |b One-Dimensional Position-Dependent Models /  |c by Debora Amadori, Laurent Gosse. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 110 p. 24 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a 1 Introduction -- 2 Local and global error estimates -- 3 Position-dependent scalar balance laws -- 4 Lyapunov functional for inertial approximations -- 5 Entropy dissipation and comparison with Lyapunov estimates -- 6 Conclusion and outlook. 
520 |a This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-dependent relaxation system, in inertial approximation. Such estimates shed light on why those algorithms based on source terms handled like "local scatterers" can outperform other, more standard, numerical schemes. Two-dimensional Riemann problems for the linear wave equation are also solved, with discussion of the issues raised relating to the treatment of 2D balance laws. All of the material provided in this book is highly relevant for the understanding of well-balanced schemes and will contribute to future improvements. 
650 0 |a Differential equations. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical physics. 
650 1 4 |a Differential Equations. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Gosse, Laurent.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319247847 
776 0 8 |i Printed edition:  |z 9783319247861 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-24785-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)