Cargando…

A Concise Introduction to Analysis

This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stroock, Daniel W. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-24469-3
003 DE-He213
005 20220116075322.0
007 cr nn 008mamaa
008 151030s2015 sz | s |||| 0|eng d
020 |a 9783319244693  |9 978-3-319-24469-3 
024 7 |a 10.1007/978-3-319-24469-3  |2 doi 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Stroock, Daniel W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Concise Introduction to Analysis  |h [electronic resource] /  |c by Daniel W. Stroock. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 218 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Analysis on The Real Line -- Elements of Complex Analysis -- Integration -- Higher Dimensions -- Integration in Higher Dimensions -- A Little Bit of Analytic Function Theory. 
520 |a This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate mathematics students, graduate students in fields where mathematics is used, as well as to those wishing to supplement their mathematical education on their own. Wherever possible, an attempt has been made to give interesting examples that demonstrate how the ideas are used and why it is important to have a rigorous grasp of them. 
650 0 |a Functional analysis. 
650 0 |a Functions of real variables. 
650 0 |a Functions of complex variables. 
650 0 |a Sequences (Mathematics). 
650 0 |a Integral equations. 
650 1 4 |a Functional Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Integral Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319244679 
776 0 8 |i Printed edition:  |z 9783319244686 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-24469-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)