Cargando…

Unsupervised Learning Algorithms

This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Celebi, M. Emre (Editor ), Aydin, Kemal (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-24211-8
003 DE-He213
005 20230510011705.0
007 cr nn 008mamaa
008 160429s2016 sz | s |||| 0|eng d
020 |a 9783319242118  |9 978-3-319-24211-8 
024 7 |a 10.1007/978-3-319-24211-8  |2 doi 
050 4 |a TK5101-5105.9 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Unsupervised Learning Algorithms  |h [electronic resource] /  |c edited by M. Emre Celebi, Kemal Aydin. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 558 p. 160 illus., 101 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Feature Construction -- Feature Extraction -- Feature Selection -- Association Rule Learning -- Clustering -- Anomaly/Novelty/Outlier Detection -- Evaluation of Unsupervised Learning -- Applications -- Conclusion. 
520 |a This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field. 
650 0 |a Telecommunication. 
650 0 |a Computational intelligence. 
650 0 |a Computer networks . 
650 0 |a Pattern recognition systems. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Communications Engineering, Networks. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Celebi, M. Emre.  |e editor.  |0 (orcid)0000-0002-2721-6317  |1 https://orcid.org/0000-0002-2721-6317  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Aydin, Kemal.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319242095 
776 0 8 |i Printed edition:  |z 9783319242101 
776 0 8 |i Printed edition:  |z 9783319795904 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-24211-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)