Cargando…

Information Science for Materials Discovery and Design

This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Lookman, Turab (Editor ), Alexander, Francis J. (Editor ), Rajan, Krishna (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Springer Series in Materials Science, 225
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-23871-5
003 DE-He213
005 20220114094520.0
007 cr nn 008mamaa
008 151212s2016 sz | s |||| 0|eng d
020 |a 9783319238715  |9 978-3-319-23871-5 
024 7 |a 10.1007/978-3-319-23871-5  |2 doi 
050 4 |a T174.7 
050 4 |a TA418.9.N35 
072 7 |a TBN  |2 bicssc 
072 7 |a TEC027000  |2 bisacsh 
072 7 |a TBN  |2 thema 
082 0 4 |a 620.5  |2 23 
245 1 0 |a Information Science for Materials Discovery and Design  |h [electronic resource] /  |c edited by Turab Lookman, Francis J. Alexander, Krishna Rajan. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVII, 307 p. 134 illus., 88 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Materials Science,  |x 2196-2812 ;  |v 225 
505 0 |a From the Contents: Introduction -- Data-Driven Discovery of Physical, Chemical, and Pharmaceutical Materials -- Cross-Validation and Inference in Bioinformatics/Cancer Genomics -- Applying MQSPRs - New Challenges and Opportunities. 
520 |a This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a "fourth leg'' to our toolkit to make the "Materials Genome'' a reality, the science of Materials Informatics. 
650 0 |a Nanotechnology. 
650 0 |a Materials. 
650 0 |a Data mining. 
650 0 |a System theory. 
650 0 |a Materials-Analysis. 
650 0 |a Mathematical physics. 
650 1 4 |a Nanotechnology. 
650 2 4 |a Materials Engineering. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Complex Systems. 
650 2 4 |a Characterization and Analytical Technique. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Lookman, Turab.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Alexander, Francis J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rajan, Krishna.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319238708 
776 0 8 |i Printed edition:  |z 9783319238722 
776 0 8 |i Printed edition:  |z 9783319795416 
830 0 |a Springer Series in Materials Science,  |x 2196-2812 ;  |v 225 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-23871-5  |z Texto Completo 
912 |a ZDB-2-CMS 
912 |a ZDB-2-SXC 
950 |a Chemistry and Materials Science (SpringerNature-11644) 
950 |a Chemistry and Material Science (R0) (SpringerNature-43709)