Cargando…

Euclidean Geometry and its Subgeometries

In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Eucli...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Specht, Edward John (Autor), Jones, Harold Trainer (Autor), Calkins, Keith G. (Autor), Rhoads, Donald H. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-23775-6
003 DE-He213
005 20220114183604.0
007 cr nn 008mamaa
008 151230s2015 sz | s |||| 0|eng d
020 |a 9783319237756  |9 978-3-319-23775-6 
024 7 |a 10.1007/978-3-319-23775-6  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Specht, Edward John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Euclidean Geometry and its Subgeometries  |h [electronic resource] /  |c by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XIX, 527 p. 59 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Preliminaries and Incidence Geometry (I) -- Affine Geometry: Incidence with Parallelism (IP) -- Collineations of an Affine Plane (CAP) -- Incidence and Betweenness (IB) -- Pasch Geometry (PSH) -- Ordering a Line in the Pasch Plane (ORD) -- Collineations Preserving Betweenness (COBE) -- Neutral Geometry (NEUT) -- Free Segments of a Neutral Plane (FSEG) -- Rotations about a Point of a Neutral Plane (ROT) -- Euclidean Geometry Basics (EUC) -- Isometries of a Euclidean Plane (ISM) -- Dilations of a Euclidean Plane (DLN) -- Every Line in a Euclidean Plane is an Ordered Field (OF) -- Similarity on a Euclidean Plane (SIM) -- Axial Affinities of a Euclidean Plane (AX) -- Rational Points on a Line (QX) -- A Line as Real Numbers (REAL); Coordinatization of a Plane (RR) -- Belineations on a Euclidean/LUB Plane (AA) -- Ratios of Sensed Segments (RS) -- Consistency and Independence of Axioms; Other Matters Involving Models -- References -- Index. 
520 |a In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at www.springer.com. Supplementary material is available online covering construction of complex numbers, arc length, the circular functions, angle measure, and the polygonal form of the Jordan Curve theorem. Euclidean Geometry and Its Subgeometries is intended for advanced students and mature mathematicians, but the proofs are thoroughly worked out to make it accessible to undergraduate students as well. It can be regarded as a completion, updating, and expansion of Hilbert's work, filling a gap in the existing literature. 
650 0 |a Geometry. 
650 0 |a Mathematics. 
650 0 |a History. 
650 1 4 |a Geometry. 
650 2 4 |a History of Mathematical Sciences. 
700 1 |a Jones, Harold Trainer.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Calkins, Keith G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Rhoads, Donald H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319237749 
776 0 8 |i Printed edition:  |z 9783319237763 
776 0 8 |i Printed edition:  |z 9783319795331 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-23775-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)