Cargando…

Inductive Logic Programming 24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers /

This book constitutes the thoroughly refereed post-conference proceedings of the 24th International Conference on Inductive Logic Programming, ILP 2014, held in Nancy, France, in September 2014. The 14 revised papers presented were carefully reviewed and selected from 41 submissions. The papers focu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Davis, Jesse (Editor ), Ramon, Jan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Artificial Intelligence, 9046
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-23708-4
003 DE-He213
005 20221012204805.0
007 cr nn 008mamaa
008 151226s2015 sz | s |||| 0|eng d
020 |a 9783319237084  |9 978-3-319-23708-4 
024 7 |a 10.1007/978-3-319-23708-4  |2 doi 
050 4 |a QA267-268.5 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 005.131  |2 23 
245 1 0 |a Inductive Logic Programming  |h [electronic resource] :  |b 24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers /  |c edited by Jesse Davis, Jan Ramon. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 211 p. 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 9046 
505 0 |a Reframing on Relational Data -- Inductive Learning using Constraint-driven Bias -- Nonmonotonic Learning in Large Biological Networks -- Construction of Complex Aggregates with Random Restart Hill-Climbing -- Logical minimisation of meta-rules within Meta-Interpretive Learning -- Goal and plan recognition via parse trees using prefix and infix probability computation -- Effectively creating weakly labeled training examples via approximate domain knowledge -- Learning Prime Implicant Conditions From Interpretation Transition -- Statistical Relational Learning for Handwriting Recognition -- The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions -- Towards machine learning of predictive models from ecological data -- PageRank, ProPPR, and Stochastic Logic Programs -- Complex aggregates over clusters of elements -- On the Complexity of Frequent Subtree Mining in Very Simple Structures. 
520 |a This book constitutes the thoroughly refereed post-conference proceedings of the 24th International Conference on Inductive Logic Programming, ILP 2014, held in Nancy, France, in September 2014. The 14 revised papers presented were carefully reviewed and selected from 41 submissions. The papers focus on topics such as the inducing of logic programs, learning from data represented with logic, multi-relational machine learning, learning from graphs, and applications of these techniques to important problems in fields like bioinformatics, medicine, and text mining. 
650 0 |a Machine theory. 
650 0 |a Artificial intelligence. 
650 0 |a Computer programming. 
650 0 |a Application software. 
650 0 |a Computer science. 
650 1 4 |a Formal Languages and Automata Theory. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Computer Science Logic and Foundations of Programming. 
650 2 4 |a Theory of Computation. 
700 1 |a Davis, Jesse.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ramon, Jan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319237077 
776 0 8 |i Printed edition:  |z 9783319237091 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 9046 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-23708-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)