Cargando…

Rule Based Systems for Big Data A Machine Learning Approach /

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evalu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Liu, Han (Autor), Gegov, Alexander (Autor), Cocea, Mihaela (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Studies in Big Data, 13
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-23696-4
003 DE-He213
005 20220117015419.0
007 cr nn 008mamaa
008 150909s2016 sz | s |||| 0|eng d
020 |a 9783319236964  |9 978-3-319-23696-4 
024 7 |a 10.1007/978-3-319-23696-4  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Liu, Han.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Rule Based Systems for Big Data  |h [electronic resource] :  |b A Machine Learning Approach /  |c by Han Liu, Alexander Gegov, Mihaela Cocea. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 121 p. 38 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6511 ;  |v 13 
505 0 |a Introduction -- Theoretical Preliminaries -- Generation of Classification Rules -- Simplification of Classification Rules -- Representation of Classification Rules -- Ensemble Learning Approaches -- Interpretability Analysis. 
520 |a The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Gegov, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Cocea, Mihaela.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319236957 
776 0 8 |i Printed edition:  |z 9783319236971 
776 0 8 |i Printed edition:  |z 9783319370279 
830 0 |a Studies in Big Data,  |x 2197-6511 ;  |v 13 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-23696-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)