|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-23407-6 |
003 |
DE-He213 |
005 |
20220117042455.0 |
007 |
cr nn 008mamaa |
008 |
150905s2015 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319234076
|9 978-3-319-23407-6
|
024 |
7 |
|
|a 10.1007/978-3-319-23407-6
|2 doi
|
050 |
|
4 |
|a QA843-871
|
072 |
|
7 |
|a GPFC
|2 bicssc
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
072 |
|
7 |
|a GPFC
|2 thema
|
082 |
0 |
4 |
|a 515.39
|2 23
|
100 |
1 |
|
|a Haraux, Alain.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
4 |
|a The Convergence Problem for Dissipative Autonomous Systems
|h [electronic resource] :
|b Classical Methods and Recent Advances /
|c by Alain Haraux, Mohamed Ali Jendoubi.
|
250 |
|
|
|a 1st ed. 2015.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2015.
|
300 |
|
|
|a XII, 142 p. 1 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Mathematics,
|x 2191-8201
|
505 |
0 |
|
|a 1 Introduction -- 2 Some basic tools -- 3 Background results on Evolution Equations.- 4 Uniformly damped linear semi-groups.- 5 Generalities on dynamical systems.- 6 The linearization method.- 7 Gradient-like systems.- 8 Liapunov's second method - invariance principle.- 9 Some basic examples.- 10 The convergence problem in finite dimensions -- 11 The infinite dimensional case -- 12 Variants and additional results.
|
520 |
|
|
|a The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.
|
650 |
|
0 |
|a Dynamical systems.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
0 |
|a Functional analysis.
|
650 |
|
0 |
|a Operator theory.
|
650 |
1 |
4 |
|a Dynamical Systems.
|
650 |
2 |
4 |
|a Differential Equations.
|
650 |
2 |
4 |
|a Functional Analysis.
|
650 |
2 |
4 |
|a Operator Theory.
|
700 |
1 |
|
|a Jendoubi, Mohamed Ali.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319234069
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319234083
|
830 |
|
0 |
|a SpringerBriefs in Mathematics,
|x 2191-8201
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-23407-6
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|