Dense Image Correspondences for Computer Vision
This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applic...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction to Dense Optical Flow
- SIFT Flow: Dense Correspondence across Scenes and its Applications
- Dense, Scale-Less Descriptors
- Scale-Space SIFT Flow
- Dense Segmentation-aware Descriptors
- SIFTpack: A Compact Representation for Efficient SIFT Matching
- In Defense of Gradient-Based Alignment on Densely Sampled Sparse Features
- From Images to Depths and Back
- DepthTransfer: Depth Extraction from Video Using Non-parametric Sampling
- Joint Inference in Image Datasets via Dense Correspondence
- Dense Correspondences and Ancient Texts.