Cargando…

Dense Image Correspondences for Computer Vision

This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Hassner, Tal (Editor ), Liu, Ce (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-23048-1
003 DE-He213
005 20220116061118.0
007 cr nn 008mamaa
008 151121s2016 sz | s |||| 0|eng d
020 |a 9783319230481  |9 978-3-319-23048-1 
024 7 |a 10.1007/978-3-319-23048-1  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Dense Image Correspondences for Computer Vision  |h [electronic resource] /  |c edited by Tal Hassner, Ce Liu. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 295 p. 152 illus., 146 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Dense Optical Flow -- SIFT Flow: Dense Correspondence across Scenes and its Applications -- Dense, Scale-Less Descriptors -- Scale-Space SIFT Flow -- Dense Segmentation-aware Descriptors -- SIFTpack: A Compact Representation for Efficient SIFT Matching -- In Defense of Gradient-Based Alignment on Densely Sampled Sparse Features -- From Images to Depths and Back -- DepthTransfer: Depth Extraction from Video Using Non-parametric Sampling -- Joint Inference in Image Datasets via Dense Correspondence -- Dense Correspondences and Ancient Texts. 
520 |a This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides in-depth coverage of dense-correspondence estimation ·         Covers both the breadth and depth of new achievements in dense correspondence estimation and their applications ·         Includes information for designing computer vision systems that rely on efficient and robust correspondence estimation  . 
650 0 |a Signal processing. 
650 0 |a Computer vision. 
650 0 |a Artificial intelligence. 
650 0 |a Telecommunication. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computer Vision. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Communications Engineering, Networks. 
700 1 |a Hassner, Tal.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Liu, Ce.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319230474 
776 0 8 |i Printed edition:  |z 9783319230498 
776 0 8 |i Printed edition:  |z 9783319359144 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-23048-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)