Cargando…

Social Network-Based Recommender Systems

This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on 'socia...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schall, Daniel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-22735-1
003 DE-He213
005 20220118212522.0
007 cr nn 008mamaa
008 150923s2015 sz | s |||| 0|eng d
020 |a 9783319227351  |9 978-3-319-22735-1 
024 7 |a 10.1007/978-3-319-22735-1  |2 doi 
050 4 |a QA76.76.A65 
072 7 |a UB  |2 bicssc 
072 7 |a COM032000  |2 bisacsh 
072 7 |a UX  |2 thema 
082 0 4 |a 005.3  |2 23 
100 1 |a Schall, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Social Network-Based Recommender Systems  |h [electronic resource] /  |c by Daniel Schall. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 126 p. 42 illus., 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview of Social Recommender Systems -- Link Prediction for Directed Graphs -- Follow Recommendation in Communities -- Partner Recommendation -- Social Broker Recommendation -- Conclusion. 
520 |a This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on 'social brokers' are presented. Chapters cover a wide range of models and algorithms, including graph models and a personalized PageRank model. Extensive experiments and scenarios using real world datasets from GitHub, Facebook, Twitter, Google Plus and the European Union ICT research collaborations serve to enhance reader understanding of the material with clear applications. Each chapter concludes with an analysis and detailed summary. Social Network-Based Recommender Systems is designed as a reference for professionals and researchers working in social network analysis and companies working on recommender systems. Advanced-level students studying computer science, statistics or mathematics will also find this books useful as a secondary text. 
650 0 |a Application software. 
650 0 |a Graph theory. 
650 0 |a Social sciences-Data processing. 
650 1 4 |a Computer and Information Systems Applications. 
650 2 4 |a Graph Theory. 
650 2 4 |a Computer Application in Social and Behavioral Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319227344 
776 0 8 |i Printed edition:  |z 9783319227368 
776 0 8 |i Printed edition:  |z 9783319372297 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-22735-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)