Cargando…

Interpretability of Computational Intelligence-Based Regression Models

The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kenesei, Tamás (Autor), Abonyi, János (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-21942-4
003 DE-He213
005 20220118115515.0
007 cr nn 008mamaa
008 151022s2015 sz | s |||| 0|eng d
020 |a 9783319219424  |9 978-3-319-21942-4 
024 7 |a 10.1007/978-3-319-21942-4  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Kenesei, Tamás.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Interpretability of Computational Intelligence-Based Regression Models  |h [electronic resource] /  |c by Tamás Kenesei, János Abonyi. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 82 p. 34 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Interpretability of Hinging Hyperplanes -- Interpretability of Neural Networks -- Interpretability of Support Vector Machines -- Summary. 
520 |a The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression. The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Abonyi, János.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319219417 
776 0 8 |i Printed edition:  |z 9783319219431 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-21942-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)