Cargando…

Quantum Information Processing with Finite Resources Mathematical Foundations /

This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigation possible. A strong emp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tomamichel, Marco (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Mathematical Physics, 5
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-21891-5
003 DE-He213
005 20220119124149.0
007 cr nn 008mamaa
008 151014s2016 sz | s |||| 0|eng d
020 |a 9783319218915  |9 978-3-319-21891-5 
024 7 |a 10.1007/978-3-319-21891-5  |2 doi 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHQ  |2 thema 
082 0 4 |a 530.12  |2 23 
100 1 |a Tomamichel, Marco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantum Information Processing with Finite Resources  |h [electronic resource] :  |b Mathematical Foundations /  |c by Marco Tomamichel. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 138 p. 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1765 ;  |v 5 
505 0 |a Introduction -- Finite Resource Information Theory 1.2 Motivating Example -- Outline of the Book -- Modeling Quantum Information -- General Remarks on Notation -- Linear Operators and Events -- Functionals and States -- Multi-Partite Systems -- Functions on Positive Operators -- Quantum Channels -- Background and Further Reading -- Norms and Metrics -- Norms for Operators and Quantum States -- Trace Distance -- Fidelity -- Purified Distance -- Background and Further Reading -- Quantum Rényi Divergence -- Classical Rényi Divergence -- Classifying Quantum Rényi Divergences -- Minimal Quantum Rényi Divergence -- Petz Quantum Rényi Divergence -- Background and Further Reading -- Conditional Rényi Entropy -- Conditional Entropy from Divergence -- Definitions and Properties.-Duality Relations and their Applications -- Chain Rules -- Background and Further Reading -- Smooth Entropy Calculus -- Min- and Max-Entropy -- Smooth Entropies -- Properties of the Smooth Entropies -- Fully Quantum Asymptotic Equipartition Property -- Background and Further Reading -- Selected Applications -- Binary Quantum Hypothesis Testing -- Entropic Uncertainty Relations -- Randomness Extraction -- Background and Further Reading -- A Some Fundamental Matrix Analysis Results -- References. 
520 |a This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigation possible. A strong emphasis is given to information measures that are essential for the study of devices of finite size, including Rényi entropies and smooth entropies. The presentation is self-contained and includes rigorous and concise proofs of the most important properties of these measures. The first chapters will introduce the formalism of quantum mechanics, with particular emphasis on norms and metrics for quantum states. This is necessary to explore quantum generalizations of Rényi divergence and conditional entropy, information measures that lie at the core of information theory. The smooth entropy framework is discussed next and provides a natural means to lift many arguments from information theory to the quantum setting. Finally selected applications of the theory to statistics and cryptography are discussed. The book is aimed at graduate students in Physics and Information Theory. Mathematical fluency is necessary, but no prior knowledge of quantum theory is required. 
650 0 |a Quantum physics. 
650 0 |a Quantum computers. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Spintronics. 
650 1 4 |a Quantum Physics. 
650 2 4 |a Quantum Computing. 
650 2 4 |a Data Structures and Information Theory. 
650 2 4 |a Spintronics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319218908 
776 0 8 |i Printed edition:  |z 9783319218922 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1765 ;  |v 5 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-21891-5  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)