Cargando…

Lectures on Nonlinear Evolution Equations Initial Value Problems /

This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Racke, Reinhard (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edición:2nd ed. 2015.
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Introduction
  • 1. Global solutions to wave equations - existence theorems
  • 2. L^p - L^q-decay estimates for the linear we equation
  • 3. Linear symmetric hyperbolic systems
  • 3.1 Energy estimates
  • 3.2 A global existence theorem
  • 3.3 Remarks on other methods
  • 4. Some inequalities
  • 5. Local existence for quasilinear symmetric hyperbolic
  • 6. High energy estimates
  • 7. Weighted  a priori estimates
  • 8. Global solutions to wave equations - proofs
  • 8.1 Proof of Theorem 1.1
  • 8.2 Proof ot Theorem 1.2
  • 9. Other methods
  • 10. Development of singularities
  • 11. More evolutions equations
  • 11.1 Equations of elasiticity
  • 11.1.1 Initially isotropic media in R^3
  • 11.1.2 Initially cubic media in R^3
  • 11.2 Heat equations
  • 11.3 Equations of thermoelasticity
  • 11.4 Schrödinger equations
  • 11.5 Klein-Gordon equations
  • 11.6 Maxwell equations
  • 11.7 Plate equations
  • 12. Further aspects and questions
  • 13. Evolution equations in waveguides
  • 13.1 Nonlinear wave equations
  • 13.1.1 Linear part
  • 13.1.2 Nonlinear part
  • 13.2. Schrödinger equations
  • 13.3. Equations of elasticity and Maxwell equations
  • 13.4 General waveguides
  • Appendix
  • A. Interpolation
  • B. The Theorem of Cauchy-Kowalevsky
  • C. A local existence theorem for hyperbolic-parabolic systems References Notation Index.