Cargando…

Feature Selection for High-Dimensional Data

This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.   The authors first focus on the analysis and synthesis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bolón-Canedo, Verónica (Autor), Sánchez-Maroño, Noelia (Autor), Alonso-Betanzos, Amparo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Artificial Intelligence: Foundations, Theory, and Algorithms,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-21858-8
003 DE-He213
005 20220116153541.0
007 cr nn 008mamaa
008 151005s2015 sz | s |||| 0|eng d
020 |a 9783319218588  |9 978-3-319-21858-8 
024 7 |a 10.1007/978-3-319-21858-8  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Bolón-Canedo, Verónica.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Feature Selection for High-Dimensional Data  |h [electronic resource] /  |c by Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 147 p. 16 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Artificial Intelligence: Foundations, Theory, and Algorithms,  |x 2365-306X 
505 0 |a Introduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges. 
520 |a This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.   The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.   The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence-Data processing. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Science. 
700 1 |a Sánchez-Maroño, Noelia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Alonso-Betanzos, Amparo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319218571 
776 0 8 |i Printed edition:  |z 9783319218595 
776 0 8 |i Printed edition:  |z 9783319366432 
830 0 |a Artificial Intelligence: Foundations, Theory, and Algorithms,  |x 2365-306X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-21858-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)