Cargando…

Uncertainty in Biology A Computational Modeling Approach /

Computational modeling of biomedical processes is gaining more and more weight in the current research into the etiology of biomedical problems and potential treatment strategies.  Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obt...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Geris, Liesbet (Editor ), Gomez-Cabrero, David (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Studies in Mechanobiology, Tissue Engineering and Biomaterials, 17
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-21296-8
003 DE-He213
005 20221122150517.0
007 cr nn 008mamaa
008 151026s2016 sz | s |||| 0|eng d
020 |a 9783319212968  |9 978-3-319-21296-8 
024 7 |a 10.1007/978-3-319-21296-8  |2 doi 
050 4 |a R856-857 
072 7 |a MQW  |2 bicssc 
072 7 |a TEC059000  |2 bisacsh 
072 7 |a MQW  |2 thema 
082 0 4 |a 610.28  |2 23 
245 1 0 |a Uncertainty in Biology  |h [electronic resource] :  |b A Computational Modeling Approach /  |c edited by Liesbet Geris, David Gomez-Cabrero. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 478 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Mechanobiology, Tissue Engineering and Biomaterials,  |x 1868-2014 ;  |v 17 
505 0 |a An Introduction to Uncertainty in the Development of Computational Models of Biological Processes -- Reverse Engineering under Uncertainty -- Probabilistic Computational Causal Discovery for Systems Biology -- Macroscopic Simulation of Individual-Based Stochastic Models for Biological Processes -- The Experimental Side of Parameter Estimation -- Statistical Data Analysis and Modeling -- Optimization in Biology: Parameter Estimation and the Associated Optimization Problem -- Interval Methods -- Model Extension and Model Selection -- Bayesian Model Selection Methods and their Application to Biological ODE Systems -- Sloppiness and the Geometry of Parameter Space -- Modeling and Model Simplification to Facilitate Biological Insights and Predictions -- Sensitivity Analysis by Design of Experiments -- Waves in Spatially-Disordered Neural Fields: a Case Study in Uncertainty Quantification -- X In-silico Models of Trabecular Bone: a Sensitivity Analysis Perspective -- Neuroswarm: a Methodology to Explore the Constraints that Function Imposes on Simulation Parameters in Large-Scale Networks of Biological Neurons -- Prediction Uncertainty Estimation Despite Unidentifiability: an Overview of Recent Developments -- Computational Modeling Under Uncertainty: Challenges and Opportunities. 
520 |a Computational modeling of biomedical processes is gaining more and more weight in the current research into the etiology of biomedical problems and potential treatment strategies.  Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process.  This book wants to address four main issues related to the building and validation of computational models of biomedical processes: Modeling establishment under uncertainty Model selection and parameter fitting Sensitivity analysis and model adaptation Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples.  This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior. 
650 0 |a Biomedical engineering. 
650 0 |a Mathematics-Data processing. 
650 0 |a Bioinformatics. 
650 1 4 |a Biomedical Engineering and Bioengineering. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Computational and Systems Biology. 
700 1 |a Geris, Liesbet.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gomez-Cabrero, David.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319212951 
776 0 8 |i Printed edition:  |z 9783319212975 
776 0 8 |i Printed edition:  |z 9783319343723 
830 0 |a Studies in Mechanobiology, Tissue Engineering and Biomaterials,  |x 1868-2014 ;  |v 17 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-21296-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)