Cargando…

Modelling and Control of Dynamic Systems Using Gaussian Process Models

This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kocijan, Juš (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Advances in Industrial Control,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-21021-6
003 DE-He213
005 20220119144823.0
007 cr nn 008mamaa
008 151121s2016 sz | s |||| 0|eng d
020 |a 9783319210216  |9 978-3-319-21021-6 
024 7 |a 10.1007/978-3-319-21021-6  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Kocijan, Juš.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modelling and Control of Dynamic Systems Using Gaussian Process Models  |h [electronic resource] /  |c by Juš Kocijan. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 267 p. 117 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Industrial Control,  |x 2193-1577 
505 0 |a System Identification with GP Models -- Incorporation of Prior Knowledge -- Control with GP Models -- Trends, Challenges and Research Opportunities -- Case Studies. 
520 |a This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas-liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. 
650 0 |a Control engineering. 
650 0 |a Chemistry, Technical. 
650 0 |a Statistics . 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Industrial Chemistry. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319210209 
776 0 8 |i Printed edition:  |z 9783319210223 
776 0 8 |i Printed edition:  |z 9783319793276 
830 0 |a Advances in Industrial Control,  |x 2193-1577 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-21021-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)