Cargando…

New Approaches to Nonlinear Waves

The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resona...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Tobisch, Elena (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes in Physics, 908
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Introduction (E. Tobisch)
  • Brief historical overview
  • Main notions
  • Resonant interactions
  • Modulation instability
  • Frameworks
  • Reality check
  • References
  • The effective equation method (Sergei Kuksin and Alberto Maiocchi)
  • Introduction
  • How to construct the effective equation
  • Structure of resonances
  • CHM: resonance clustering
  • Concluding remarks
  • References
  • On the discovery of the steady-state resonant water waves (Shijun Liao, Dali Xu and Zeng Liu)
  • Introduction
  • Basic ideas of homotopy analysis method
  • Steady-state resonant waves in constant-depth water
  • Experimental observation
  • Concluding remarks
  • References
  • Modulational instability in equations of KdV type (Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson)
  • Introduction
  • Periodic traveling waves of generalized KdV equations
  • Formal asymptotics and Whitham's modulation theory
  • Rigorous theory of modulational instability
  • Applications
  • Concluding remarks
  • References
  • Modulational instability and rogue waves in shallow water models (R. Grimshaw, K. W. Chow and H. N. Chan)
  • Introduction
  • Korteweg-de Vries equations
  •  Boussinesq model
  • Hirota-Satsuma model
  • Discussion
  • References
  • Hamiltonian framework for short optical pulses (Shalva Amiranashvili)
  • Introduction
  •  Poisson brackets
  •  Pulses in optical fibers
  •  Hamiltonian description of pulses
  •  Concluding remarks
  • References
  • Modeling water waves beyond perturbations (Didier Clamond and Denys Dutykh)
  • Introduction
  • Preliminaries
  • Variational formulations
  • Examples
  • Discussion
  • References
  • Quantitative Analysis of Nonlinear Water-Waves: a Perspective of an Experimentalist (Lev Shemer)
  • Introduction
  • The experimental facilities
  • The Nonlinear Schrödinger Equation
  • The Modified Nonlinear Schrödinger (Dysthe) Equation
  • The Spatial Zakharov Equation
  •  Statistics of nonlinear unidirectional water waves
  • Discussion and Conclusions
  • References.