Cargando…

Infinity Properads and Infinity Wheeled Properads

The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hackney, Philip (Autor), Robertson, Marcy (Autor), Yau, Donald (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Mathematics, 2147
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-20547-2
003 DE-He213
005 20220119235816.0
007 cr nn 008mamaa
008 150907s2015 sz | s |||| 0|eng d
020 |a 9783319205472  |9 978-3-319-20547-2 
024 7 |a 10.1007/978-3-319-20547-2  |2 doi 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 514.2  |2 23 
100 1 |a Hackney, Philip.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Infinity Properads and Infinity Wheeled Properads  |h [electronic resource] /  |c by Philip Hackney, Marcy Robertson, Donald Yau. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 358 p. 213 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2147 
505 0 |a Introduction -- Graphs -- Properads -- Symmetric Monoidal Closed Structure on Properads -- Graphical Properads -- Properadic Graphical Category -- Properadic Graphical Sets and Infinity Properads -- Fundamental Properads of Infinity Properads -- Wheeled Properads and Graphical Wheeled Properads -- Infinity Wheeled Properads -- What's Next?. 
520 |a The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter.   Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory. 
650 0 |a Algebraic topology. 
650 0 |a Algebra, Homological. 
650 1 4 |a Algebraic Topology. 
650 2 4 |a Category Theory, Homological Algebra. 
700 1 |a Robertson, Marcy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Yau, Donald.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319205489 
776 0 8 |i Printed edition:  |z 9783319205465 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2147 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-20547-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)